
www.manaraa.com

Building Content-Based Publish/Subscribe
Systems with Distributed Hash Tables?

David Tam, Reza Azimi, and Hans-Arno Jacobsen

Department of Electrical and Computer Engineering,
University of Toronto, Toronto ON M5S 3G4, Canada

{tamda, azimi, jacobsen}@eecg.toronto.edu

Abstract. Building distributed content–based publish/subscribe sys-
tems has remained a challenge. Existing solutions typically use a rel-
atively small set of trusted computers as brokers, which may lead to
scalability concerns for large Internet–scale workloads. Moreover, since
each broker maintains state for a large number of users, it may be difficult
to tolerate faults at each broker. In this paper we propose an approach to
building content–based publish/subscribe systems on top of distributed
hash table (DHT) systems. DHT systems have been effectively used for
scalable and fault–tolerant resource lookup in large peer–to–peer net-
works. Our approach provides predicate–based query semantics and sup-
ports constrained range queries. Experimental evaluation shows that our
approach is scalable to thousands of brokers, although proper tuning is
required.

1 Introduction

Publish/subscribe systems are becoming increasingly popular in building large
distributed information systems. In such systems, subscribers specify their inter-
ests to the system using a set of subscriptions. Publishers submit new informa-
tion into the system using a set of publications. Upon receiving a publication,
the system searches for matching subscriptions and notifies the interested sub-
scribers. Unlike the client/server model, the publish/subscribe model decouples
time, space, and flow between publishers and subscribers, which may lead to
benefits such as reduced program complexity and resource consumption.

There are at least two major classes of publish/subscribe systems: (i) topic–
based and (ii) content–based. In topic–based systems, subscribers join a group
containing a topic of interest. Publications that belong to the topic are broad-
casted to all members of the group. Therefore, publishers and subscribers must
explicitly specify the group they wish to join. Topic–based systems are simi-
lar to the earlier group communication and event–notification systems (e.g. in
newsgroups).

�

To appear in (i) the International Workshop on Databases, Information Systems
and Peer–to–Peer Computing, September 7–8, 2003, Humboldt University, Berlin,
Germany, and (ii) Lecture Notes in Computer Science, c© Springer-Verlag.

www.manaraa.com

In content–based publish/subscribe systems, the matching of subscriptions
and publications is based on content and no prior knowledge is needed (e.g. the
set of available topics). Therefore, these systems are more flexible and useful since
subscribers can specify their interests more accurately using a set of predicates.
The main challenge in building such systems is to develop an efficient matching
algorithm that scales to millions of publications and subscriptions.

Publish/subscribe systems can be implemented centrally or in a distributed
manner. Centralized systems have the advantage of retaining a global image of
the system at all times, enabling intelligent optimizations during the match-
ing process. Examples of intelligent matching algorithms can be found in [1],
[2], [3], [4], and [5]. Major disadvantages of centralized systems are the lack
of scalability and fault–tolerance. Distributed publish/subscribe systems have
been introduced to address these problems [6] [7]. However, the main difficulty
in building distributed content–based systems is the design of an efficient dis-
tributed matching algorithm. Existing distributed content–based systems such as
[6] typically rely on a small number of trusted brokers that are inter–connected
using a high–bandwidth network. In some scenarios, such configurations may
not offer adequate scalability. As well, they do not provide a satisfactory level
of fault–tolerance since crashing a single broker may result in a large number of
state transfer operations during recovery.

Recently, distributed hash tables (DHTs) [8] [9] [10] [11] have emerged as an
infrastructure for efficient, scalable resource lookup in large peer–to–peer dis-
tributed networks. Such systems are decentralized, scalable, and self–organizing
(i.e. often as well, they automatically adapt to the arrival, departure and fail-
ure of nodes in the network). Such characteristics make DHTs attractive for
building distributed applications. In fact, DHTs have successfully been used in
several application domains, such as distributed file systems [12] [13] [14] [15].
It has also been shown that topic–based publish/subscribe systems can be built
on top of DHTs [16]. Although there have been several attempts in building
content–based publish/subscribe systems on top of peer–to–peer systems [17]
[18], there remains much to be explored. Compared to our system, the systems
described in [17] and [18] exploit the underlying DHT infrastructure to different
degrees.

In this paper, we present a simple approach to building a distributed content–
based publish/subscribe system on top of a DHT. More specifically, we use a
topic–based system (Scribe) [16] that is implemented using a DHT (Pastry) [10].
In our approach, topics are automatically detected from the content of subscrip-
tions and publications through the use of a schema, which is a set of guidelines
for selecting topics. The schema is application–specific and can be provided by
the application designer after some statistical analysis. Schemas are similar to
database schemas used in RDBMS. With this approach we can significantly
increase the expressiveness of subscriptions compared to purely topic–based sys-
tems. However, our scheme does not fully provide the query semantics of a tra-
ditional content–based system. Queries are not completely free–form but must
adhere to a predefined template. Moreover, issues of fault–tolerance in subscrip-

www.manaraa.com

tion storage have yet to be explored in our system, although fault–tolerance in
DHT routing and multicast routing can be transparently handled by Pastry and
Scribe, respectively. We implement our scheme on top of the existing DHT sim-
ulator included in Pastry.1 Our evaluation shows that with a carefully designed
schema, it is possible to achieve accurate, efficient and scalable matching.

The remainder of the paper is organized as follows. In Section 2, we review
related work, including a brief overview of DHT systems. In Sections 3 and
4, we describe the key features of our design. In Section 5, the experimental
platform and our results are presented and discussed. In Section 6, we conclude
and suggest directions for future work.

2 Related Work

In a typical DHT system, each node has a unique identifier (nodeId). Also,
each message can be associated with a key of the same type as the nodeIds.
Keys and nodeIds are typically uniformly distributed. Given a message and its
corresponding key, a DHT system routes the message to the node whose nodeId is
numerically closest to the message key (home node). Given a uniform distribution
of the nodeIds and keys, the routing task is evenly distributed among the nodes of
the network. The message routing algorithm works based on the key and nodeId
digits (in any base). Therefore, routing usually requires O(logN) hops, where N

is the total number of nodes in the network. In order to tolerate node failures
or network disconnections, several methods are used to replicate messages to a
set of neighboring nodes of the home node. Also, in order to increase locality,
a proximity metric may be defined to reflect the latency and bandwidth of the
connection between any pair of nodes. Such a proximity metric along with keys
are used in finding the optimal route between nodes.

Scribe [16] is a topic–based publish/subscribe system (a.k.a. a multicast in-
frastructure) that is built on top of Pastry [10], a DHT system developed at Rice
University. Subscribers join topics of interest, where each topic is identified with
a Pastry–level key. Therefore, for each topic there is a Pastry node whose nodeId
is numerically closest to the topic key (topic root). Publications are submitted to
the corresponding topics. Each publication is then multicasted to all subscribers
of the topic. Scribe is a simple, well–structured topic–based system. However, it
does not support content–based subscriptions and publications.

SIENA [6] is a distributed content–based event notification system which
can be used to implement a publish/subscribe system. Routing is performed in
the overlay network based on the content of messages. However, SIENA is not
based on a DHT networking substrate. Therefore, it cannot take advantage of
the inherent scalability and fault–tolerance of such an infrastructure.

In content–based publish/subscribe systems, the handling of range queries
is an important capability to possess. It allows for higher expressiveness and a
more elegant interface to the system. A number of projects, as described below,
have attempted to address this issue in peer–to–peer systems.

1 We used FreePastry, which is an open–source implementation of Pastry.

www.manaraa.com

Extensions to CAN [9] have been proposed and evaluated in [19] to enable
range queries. The DHT hash function is modified to use a Hilbert space filling
curve to map an attribute value to a location in the CAN key space. This curve
enables proximity in the attribute value space to correspond to proximity in the
key space. With such a configuration, routing and searching in the key space
corresponds to routing and searching in the attribute value space. While the
work addresses range queries of a single attribute, extending the technique to
handle range queries of multiple attributes has yet to be addressed. It is not clear
whether handling multiple attributes can be accomplished by simply applying
the technique multiple times. As explained by Andrzejak et al., the extension of
this technique to handle multiple attributes in a single enhanced DHT system
is an interesting problem and remains to be completed.

SkipNet [20] offers an alternative and complimentary technology to DHTs.
Using a distributed form of the skip lists data structure, SkipNet is able to
control both routing and data placement in an overlay network. Harvey et al.
briefly suggest that the use of skip lists enables SkipNet to inherit the ability to
perform range queries in an efficient and flexible manner. The implementation
and evaluation of range queries in SkipNet has yet to be reported. P–Grid [21]
is yet another alternative to DHTs, which uses a distributed binary tree rather
than a hash table.

Finally, in [22] Gupta et al. develop a peer–to–peer data sharing archi-
tecture for providing approximate answers to range queries by finding simi-
lar ranges. They use a locality–sensitive hashing scheme to co–locate similar
ranges. Although the contribution of the work is important in providing DBMS–
like query processing in peer–to–peer systems, for practical content–based pub-
lish/subscribe the hash function error rate of this approach may become too
high. In [23], Sahin et al. extend CAN to approximately process basic range
queries as well.

3 Design

Our approach bridges the gap between topic–based and content–based systems
by automatically organizing the content into several topics. For each publication
and subscription we build a set of topics for submission to a topic–based system.
Automatically building such topics requires that the content provided by the
user application follows certain rules and constraints. We call such rules and
constraints the schema. Each application domain may have a different schema,
and the system is capable of handling multiple domain schemas simultaneously.

3.1 Domain Schema

For each application domain, we define a schema to describe the general format of
subscriptions and publications that belong to the domain. The idea of a domain
schema is similar to a DBMS–style schema. The purpose of using a domain
schema is to limit the number of possible combinations of messages that must

www.manaraa.com

Table 1. An example of a schema table for “COMPUTERS” with three indices. The
first index is useful to subscribers concerned mainly with price and visible quality. The
second index is useful to subscribers concerned mainly with processing power. The
third index is useful to subscribers concerned mainly with storage capacity combined
with processing power

Order Type/Unit Name Values Index 1 Index 2 Index 3

1 USD Price 1000 .. 5000
√

2 String CPU PII, PIII, P4, Celeron
√ √

3 MHz Clock 200 .. 3000
√

4 Mbyte RAM 64 .. 1024
√

5 Gbyte HDD 10.. 200
√

6 Inch Monitor 14 .. 20
√

7 String CD CDROM, CDRW, DVD
√

8 String Quality New, Used, Demo
√

be generated and sent out in the DHT system. This technique enables us to
feasibly transform a topic–based publish/subscribe system into a content–based
system. The schema must be broadcasted to all nodes that are running relevant
applications prior to the operation of such applications. Each domain is identified
with a unique ID (name) so that the system can handle multiple application
domains simultaneously. For instance, the publish/subscribe system may be used
by a stock market and an auction network simultaneously.

Each schema consists of several tables, each with a standard name. For each
table, we maintain information about a set of attributes, including their type,
name, and constraints on possible values. We assume the table attributes are
ordered. Also for each table, there is a set of indices that are used for the ac-
tual lookup in the network. Each index is an ordered collection of strategically
selected attributes. Selecting the optimal set of attributes for indices is essential
to achieving acceptable performance. Similar to indices in database systems, it
is imperative to choose attributes that are more of a user’s concern, and hence,
more likely to be used by the users for lookup. Table 1 shows a simple example
of a schema table. It contains three indices corresponding to users with various
interests. Currently, we require application designers to intelligently specify do-
main schemas manually. Designers could be assisted by profiles from a centralized
content–based system to identify important attributes and their values.

3.2 Basic System Operation

When a request (publication or subscription) is submitted to the system, it
is inspected to extract several index digests. Each index digest is a string of
characters that is formed by concatenating the attribute type, name, and value
of each attribute in the index. For the example schema in Table 1, some possible
topic digests would be [USD : Price : 1000 : Inch: Monitor : 19 : String : Quality
: Used] and [String : CPU : PIII : MHz : Clock : 650 : Mbyte : RAM : 512]. In the

www.manaraa.com

simple case, we assume that subscribers provide exact values for each attribute.
Handling range queries is discussed in Section 3.5. The use of schemas is a key
technique in significantly reducing the number of topic digests and corresponding
messages. Without a schema, the above technique would require a digest for
every possible combination of predicates in every subscription. The maximum
number of such digests would be 2N , where N is the number of predicates in
the subscription. Such requirements would generate an extremely large number
of messages and render the system infeasible.

A given subscription can be submitted to the system only if it specifies all
attribute values for at least one of the indices in the corresponding schema table.
In such a case, the composed index digest is translated to a DHT hash key. The
subscription is then sent to the key’s home node by the DHT system.2 When
a publication with attribute values that match the subscription is submitted
to the system, the same hash key is generated and therefore the publication
is delivered to the same node in the network. Such a matching is partial since
only a subset of the subscription predicates are matched in this way. The key’s
home node is responsible for completing the matching process by comparing the
publication with all submitted subscriptions to the node. A standard centralized
matching algorithm can be used in the home node for this purpose. Nodes with
subscriptions that completely match the publication are notified by the hash key
home node.

3.3 Event Notification Multicast Tree

A problem with the basic scheme is that home nodes may become overloaded
with the task of processing publications and subscriptions. An improvement to
the scheme is to build a multicast tree structure to enable better distribution
of these tasks. A multicast tree can be constructed for all nodes that have sub-
scribed to a certain hash key. The root of the tree is the hash key’s home node,
and its branches are formed along the routes from the subscriber nodes to the
root. Similar to the root node, the internal nodes in the tree may or may not
have subscribed to the index key.

The Scribe multicast tree infrastructure is exploited by our system to achieve
scalable performance. To implement efficient multicasting, Scribe builds a multi-
cast tree rooted at each topic root node as follows. When a subscription finds its
route to the topic root, all intermediate nodes along the route are added to the
multicast notification tree unless they already belong to it. Under this particular
scenario, routing stops upon encountering the edge of the corresponding mul-
ticast tree. This optimization enables the subscription operation to be efficient
and completely distributed. The multicast tree structure significantly reduces
the total number of messages generated by subscribers by allowing subscriptions
to be submitted to lower levels of the tree, obviating the need to traverse the
entire route to the root node. Moreover, the lower level nodes absorb most of the

2 The home node itself may or may not have subscribed to this hash key.

www.manaraa.com

work targeted at the root node and therefore prevent the root node from being
a bottleneck in the matching process.

For multicasting, the publication is first sent to the topic root, from which the
publication is sent all the way down the multicast tree. Such an infrastructure
can significantly reduce (i) the number of messages generated by publishers and
(ii) notification latency. Event notification is accomplished in O(logN) time,
where N is the number of nodes. Further details about the Scribe multicast
infrastructure can be found in [16]. In Section 3.4 and Section 3.5 we describe
how the Scribe multicast tree is exploited to improve the basic matching scheme.

3.4 Handling False Positives

Since the predicates of a subscription may be used in several indices, some of the
publications that are sent to an index home node may not match all predicates
of a subscription. In fact, they match only the subset of subscription predicates
that were specified in the index. We use the term miss to refer to a received
publication that partially matches a submitted subscription but does not fully
match it. We use the term hit to refer to a received publication that fully matches
a submitted subscription. To filter out the misses, exact matching is performed
at the receiver node by using conventional matching algorithms. Since subscrip-
tions and publications are uniformly distributed in the network, such a matching
process occurs in a distributed manner and therefore scales well with the number
of publications. Moreover, the use of multicast trees for event notification allows
for further distribution of the matching process among the nodes of the multicast
tree rather than concentrating it solely on the root node. For index values that
are frequently used, the multicast tree grows proportionately to the number of
users that use the index value, and therefore the matching load is automatically
balanced. The impact of false positives is examined in our experiments and is
illustrated by a variety of hit rate curves (see Fig. 1 and Fig. 2).

3.5 Range Queries and Disjunctive Forms

A potential complexity in content–based subscriptions is that the constraint on
some attributes may be specified as a range rather than an exact value. A naive
approach in handling such queries is to build hash keys only for indices that
do not include range predicates. The disadvantage of this approach is two–fold.
First, for some subscriptions, range predicates may be present in all possible
indices so that no indices can be used for submission. This solution suggests
dropping such subscriptions and hence, results in a less practical system. Second,
this solution limits the index selection policy, and therefore might result in less
accurate partial matching.

Another method of handling range predicates is to build a separate index hash
key for every attribute value in the specified range. This solution is only adequate
for attributes whose value domains are not large. For instance, in Table 1 there
may be a handful of possible values for the Monitor attribute. However, for

www.manaraa.com

other attributes such as Price, a value range might include thousands of possible
values.

Our solution for these types of attributes is to divide the range of values
into intervals and use interval indicators as values for building hash keys. For
instance, for the RAM attribute, one may suggest that there are four possible
intervals: less than 128, 128–256, 256–512, and greater than 512. Therefore, the
predicate RAM > 384 Mbyte would belong to two keys: RAM = 256–512 and
RAM = greater than 512. Of course, the matching that occurs with this scheme
is partial, and the actual complete matching must be performed at one of the
nodes in the multicast tree. Given a probability distribution function for an
attribute, it is possible to improve the division of value intervals by choosing
interval boundaries so that the collective probability of each interval is equal.
This means that for value subranges that are queried frequently, the intervals
are finer–grained. For instance in Table 1, the density of values for the Clock
attribute may be higher near main–stream processors frequencies (2.0GHz –
2.5GHz) than those of older processors (less than 1.0GHz) or high performance
processors (greater than 2.5GHz).

By having a handful of values for each attribute, we may be able to confine
the total number of hash keys for a subscription to the order of tens. As we
will show in Section 5.4, it is possible to maintain acceptable performance with
this solution since the cost of a subscription in a multicast tree–based system is
relatively low.

Similar to range queries, disjunctive form subscriptions may be treated as a
set of separate conjunctive subscriptions, where hash keys are generated for each
separate subscription.

3.6 Duplicate Notifications

Another problem with the basic scheme is that it is possible that a publication
is sent several times to a single subscriber if the subscriber has used several
indices. One solution to this problem is for the subscriber to maintain a list of
publications it has seen (given that each publication has a unique identifier), and
discard duplicate publication messages. Such a list may be relatively small, since
the average propagation time for a publication is small. Therefore, it is expected
that publication duplicates are received by the subscriber within a relatively
short interval. Thus, the subscriber may be able to set a short deadline for each
publication and purge its copy from the list after the deadline.

A better solution is to prevent a subscriber from submitting more than one
index digest, rather than to allow it to submit an index digest for every applicable
index. In this case, the subscriber must submit the index digest corresponding
to the index that is the most important. This solution would only work if pub-
lications specify values for all attributes, which we believe will be the common
case since publishers are information sources. If a publication does not specify
a value for an attribute in an index, the publication would be missed by sub-
scribers that used only that index. In our experiments, publishers specify values
for all attributes.

www.manaraa.com

4 Implementation

We have implemented our approach on top of Scribe/Pastry. Our choice of plat-
form was not fundamental to our design and we could have built our system on
top of any DHT system. We found it advantageous to exploit the multicast tree
infrastructure of Scribe, although it could have been manually implemented if it
did not exist. The Scribe/Pastry platform is implemented in Java. It simulates
a network of nodes with arbitrary size. Networks are associated with a prox-
imity metric to improve locality. However, such optimizations are transparent
to our system. The platform allows us to bind a Java object to each node as
the application. The object must implement an interface that provides at least
two functions: receiveHandler() and forwardHandler(). The former is called by
the Pastry system when a message is delivered to a node, whereas the latter is
called when a node is located along a route and is forwarding a message to some
other node. With this programmability, we have been able to embed the func-
tionality of a content–based publish/subscribe system in the application object.
Moreover, we instrumented the calls to these methods to collect statistics and
understand the behavior of the system.

5 Evaluation

As a preliminary DHT content–based publish/subscribe system, the main per-
formance goal is scalability. We want to ensure that as the size of the system
grows, performance remains relatively reasonable. In this section, we evaluate
the feasibility of the system.

The metric we used was the number of messages exchanged in the system.
This metric is a reasonable, first–order measurement of the system. Since dis-
tributed systems deal with communication and computation of physically sepa-
rate nodes, measuring traffic characteristics is important. Detailed metrics con-
cerning communication characteristics, such as latency and bandwidth consump-
tion have yet to be gathered. This area is a subject of future work.

Measuring the number of messages offers a first–order evaluation of the sys-
tem performance. Therefore, we examine the impact of changes in various system
parameters on the number of messages. Such parameters include the number of
publications and subscriptions, the number of nodes in the system, and the
number of range predicates in a subscription.

5.1 Experimental Setup

Pastry/Scribe includes a network simulator, enabling us to simulate 1000s of
nodes within one physical computer. We used the ToPSS [2] workload generator
to generate synthetic workloads.

The workload followed the schema table described in Table 2. This schema
table defines possible values of the attributes. For instance, Price can have a
value of {1, 2, 3, 4, 5}. Although some of the value ranges seem inappropriate,

www.manaraa.com

Table 2. Workload schema table

Order Type Name Values Index 1 Index 2 Index 3 Index 4

1 Integer Price 1 to 5
√ √ √ √

2 Integer Volume 1 to 5
√ √ √ √

3 Integer Color 1 to 5
√ √ √ √

4 Integer Size 1 to 5
√ √ √

5 Integer Temperature 1 to 2
√ √

6 Integer Circumference 1 to 2
√

we used them for simplicity. In reality, the DHT is not concerned with whether
the possible values of Color are {red, green, blue, cyan, magenta} or whether
the possible values are {1, 2, 3, 4, 5}. These values are used as input into
a hash function that generates a fixed–size key. For any particular attribute,
integer values are randomly generated by the workload generator with a uniform
distribution within the specified range. For this particular workload, there are
5 × 5 × 5 × 5 × 2 × 2 = 2500 unique hash key values.

We recognize that this workload does not necessarily represent a real–world
application. However, it provides a simple example of what a fairly typical sub-
scription or publication may look like. Results produced by this workload can
be easily understood and analyzed. Moreover, it is difficult to find a real–world
content–based publish/subscribe system from which we could obtain workload
traces.

Although the chosen schema size in Table 2 is small, an examination of
Table 1 may help predict the impact of schema growth. For example, if the
number of attributes in Table 1 were to increase dramatically, we would expect
only a moderate increase in the number of indices in the application domain.
This pattern appears plausible due to the inherent nature of indices. Since an
index is formed for a set of commonly used attributes, the number of indices
is largely independent of the number of attributes available. Therefore, schema
size should have limited impact on performance.

As for the size of value ranges (the number of intervals for a given attribute),
this parameter may also have a limited impact on performance. A more im-
portant characteristic is the distribution of range queries across the intervals.
For example, in a particular application domain, range queries on a particu-
lar attribute may often intersect only two intervals, regardless of the number of
available intervals. In this case, only two corresponding hash keys are submitted.
Our experiments can be viewed as examining the performance impact of up to
five intervals of intersection.

5.2 Event Scalability

Figure 1 shows the scalability of the system in terms of the number of events.
That is, the impact of the number of subscriptions and publications on the num-
ber of messages exchanged. The number of nodes was fixed at 1000 nodes. On the

www.manaraa.com

x–axis of the graph, 10000 subscriptions and publications refers to 10000 random
subscriptions followed by 10000 random publications.3 We used an equal number
of subscriptions and publications for simplicity. We also show how various hit
rates affected the number of messages generated. Hit rate is the proportion of
delivered publications that fully match the subscriptions maintained by a node.

To enforce a 100% hit rate, the schema index consisted of all attributes in
Table 2 (Index 1). To enforce other hit rates, we exploit the fact that the workload
generator randomly chooses attribute values in a uniformly distributed manner.
To attain the 50% hit rate, the schema index consisted of the first 5 attributes
(Index 2). To attain the 25% hit rate, the schema index consisted of the first
4 attributes (Index 3). Finally, to attain the 5% hit rate, the schema index
consisted of the first 3 attributes (Index 4).

The first observation from Fig. 1 is that message traffic for any particular
hit rate grows approximately quadratically with the number of subscriptions and
publications. This growth is reasonable since both subscriptions and publications
are increased simultaneously.

The second observation is on the incremental impact of the various hit rates
shown by the separate curves in the graph. One might expect that a 50% hit
rate means that a node receives twice as many publication messages than were
really destined for the node. Similarly, at a 25% hit rate four times as many
publication messages would have been generated compared to the 100% hit rate
configuration. Interestingly, the results showed lower than expected increases.

Our experiments indicated that 72% of the total messages shown in the y-axis
of Fig. 1 were publication messages. This composition is for 40000 subscriptions
and publications, with a 100% hit rate. Therefore, at a hit rate of 50%, we
expected a 72% increase in total messages but observed only a 46% increase.
At a 25% hit rate, we expected an increase of (72 + 72 + 72) = 216 % in total
messages but observed only a 123% increase.

These lower than expected increases were due to the use of multicast notifi-
cation trees. When publication notifications are triggered, only a few additional
messages are needed to reach an additional subscribing node. This phenomenon
leads to the smaller observed increase in message traffic between the various hit
rate curves.

A low hit rate, such as the 5 % curve, shows relatively steep traffic increase
compared to higher hit rates, such as 25%, 50%, or 100%. These results suggest
that it is important to have a well–designed schema such that the indices used
incur hit rates greater than 25%. Other complementary techniques, such as
subscription summaries [7], may be applicable in reducing message size.

In our current implementation, exact matching of publications to subscrip-
tions is done at the leaves of the multicast notification trees. The results in
Fig. 1 could be further improved by implementing exact matching higher up in
the multicast tree. However, such reductions in message traffic must be carefully
balanced against increased processor load on the nodes performing the exact

3 There is no correlation between subscriptions and publications. That is, there is no
guarantee that every subscription will be matched by at least one publication.

www.manaraa.com

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

0 10000 20000 30000 40000 50000 60000 70000 80000

#
 o

f
m

e
s
s
a

g
e

s
 e

x
c
h

a
n

g
e

d

of subscriptions & # of publications

5% hit rate
25% hit rate
50% hit rate

100% hit rate

Fig. 1. Scalability in the number of
events. 1000 nodes

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

0 1000 2000 3000 4000 5000 6000 7000

#
 o

f
m

e
s
s
a
g
e
s
 e

x
c
h
a
n
g
e
d

of nodes

5% hit rate
25% hit rate
50% hit rate

100% hit rate

Fig. 2. Scalability in the number of
nodes. 40000 subscriptions, 40000 pub-
lications

matching. In summary, there is a trade–off between message traffic and node
processor workload.

5.3 Node Scalability

Figure 2 shows the scalability of the system in terms of the number of nodes. The
system used a fixed number of events consisting of 40000 random subscriptions
followed by 40000 random publications. The value 40000 was arbitrarily chosen
since it represented a middle point in the range of values used in Fig. 1. The
results show that the system scales well for most hit rates (except for perhaps
the 5 % hit rate). Again, these results further suggest that is it important to
have a well–designed schema such that the indices used incur hit rates greater
than 25%.

5.4 Impact of Range Queries

Figure 3 shows the impact of range queries. In order to isolate this impact, we
use Index 1 (Table 2). The “0 range” curve represents a workload without any
range queries. For the “1 range” curve, the first attribute (Price) is allowed to
specify a range. It may have specifications such as Price = x, or Price < y,
or Price > z. The choice among {<,=,>} is chosen randomly using a uniform
distribution. All other attributes specify exact values. Similarly, for the “2 range”
curve, the first and second attributes (Price and Volume) are allowed to specify
ranges.

These results suggest that range queries have a moderate and acceptable
impact on the system. In the “1 range” curve, the Price attribute has 5 possible
values. For each range query, an average of 3 index digests are submitted, given
a uniformly random distribution. The selection of the operator {<,=,>} is also

www.manaraa.com

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

0 10000 20000 30000 40000 50000 60000 70000 80000

#
 o

f
m

e
s
s
a

g
e

s
 e

x
c
h

a
n

g
e

d

of subscriptions & # of publications

2 ranges
1 range

0 ranges

Fig. 3. Impact of range queries. 1000
nodes

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

0 1000 2000 3000 4000 5000 6000 7000

#
 o

f
m

e
s
s
a
g
e
s
 e

x
c
h
a
n
g
e
d

of nodes

2 ranges
1 range

0 ranges

Fig. 4. Scalability in the number of
nodes with range queries. 40000 sub-
scriptions, 40000 publications

uniformly distributed. Given that P (o) is the probability of a particular operator
o, and E(o) is the expected number of index digest submissions for that operator,
then the expected number of index digest submissions per subscription is

E(s) = P (<)E(<) + P (=)E(=) + P (>)E(>)
E(s) = 1

3
× 3 + 1

3
× 1 + 1

3
× 3

E(s) = 2.33 .

(1)

Similarly, we expected publications to require 2.33 times as many messages since
there are roughly 2.33 times as many interested subscribers. Due to these ex-
pected increases in both the subscription and publication components, we there-
fore expected 2.33 times as many total messages as the “0 range” curve. In
contrast, the results show only 1.6 times as many messages (at 40000 subscrip-
tions and publications). Similarly for the “2 range” curve, we expected 5.43 times
as many messages as the “0 range” curve. In contrast, the results show only 2.5
times as many messages. These beneficial results are due to the use of mul-
ticast notification trees. Subscriptions are registered efficiently and additional
publication notifications incur low incremental costs.

Figure 4 shows the impact of range queries on node scalability. Similar to
Section 5.3, the system used a fixed number of events consisting of 40000 random
subscriptions followed by 40000 random publications. The results show that the
system scales well while supporting range queries.

6 Conclusion and Future Work

We have developed a technique to implement a content–based distributed peer–
to–peer DHT–based publish/subscribe system on top of an existing topic–based
system. We found that the use of a multicast tree infrastructure was critical

www.manaraa.com

to achieving good performance. Our design offers an interesting and unexplored
point in the design space of publish/subscribe systems. Our design point exists
somewhere between a fully centralized content–based system and a fully dis-
tributed topic–based system. As a compromise, our system is a fully distributed,
content–based system with some restrictions on the expression of content. The
content must follow and fit within a well–defined schema for that particular
application domain.

Since this content–based publish/subscribe system is an early prototype,
there is plenty of future work to be done. Our next step is to perform a more
detailed examination of the benefits of the multicast tree infrastructure. Other
tasks include (i) adding more features to enable execution of real–world work-
loads, (ii) performing detailed modeling of the peer–to–peer network, and (iii)
examining fault–tolerance. This paper represents on–going research conducted
under the p2p–ToPSS project (peer–to–peer–based Toronto Publish/Subscribe
System).

We recognize that an endless number of experiments can be run, with many
possible combinations of workload parameters. In particular, using locality–
sensitive distributions in the workload generator, rather than a uniform dis-
tribution, should produce an interesting set of comparative results. However, to
achieve some level of workload validity, guidelines on how these parameters vary
in relation to each other need to be researched. We are currently not aware of any
well–accepted, standard set of workloads for content–based publish/subscribe
systems.

Guidelines for good schema design for an application domain remain an im-
portant open research question. Determining the optimal set of indices for a
particular application domain may require intimate knowledge of the application
domain, such as the typical query behavior of users. Achieving an optimal index
may require selecting attributes that are commonly specified but can uniquely
identify a subscription.

References

1. Fabret, F., Jacobsen, H.A., Llirbat, F., Pereira, J., Ross, K.A., Shasha, D.: Filtering
algorithms and implementation for very fast publish/subscribe systems. ACM
SIGMOD Record 30 (2001) 115–126

2. Ashayer, G., Leung, H.K.Y., Jacobsen, H.A.: Predicate matching and subscription
matching in publish/subscribe systems. In: Proc. of Workshop on Distributed
Event-Based Systems (DEBS), Vienna, Austria (2002) 539–546

3. Petrovic, M., Burcea, I., Jacobsen, H.A.: S-ToPSS: Semantic Toronto pub-
lish/subscribe system. In: Proc. of Conf. on Very Large Data Bases, Berlin, Ger-
many (2003) 1101–1104

4. Liu, H., Jacobsen, H.A.: Modeling uncertainties in publish/subscribe. In: Conf. on
Data Engineering (to appear). (2004)

5. Burcea, I., Muthusamy, V., Petrovic, M., Jacobsen, H.A., de Lara, E.: Disconnected
operations in publish/subscribe. In: IEEE Mobile Data Management (to appear).
(2004)

www.manaraa.com

6. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Achieving scalability and expressive-
ness in an Internet-scale event notification service. In: Proc. of ACM Symp. on
Principles of Distributed Computing (PODC), Portland, OR (2000) 219–227

7. Triantafillou, P., Economides, A.: Subscription summaries for scalability and ef-
ficiency in publish/subscribe. In: Proc. of Workshop on Distributed Event-Based
Systems, Vienna, Austria (2002) 619–624

8. Kaashoek, F.: Distributed hash tables: Building large-scale, robust distributed
applications. Presentation: ACM Symp. on PODC (2002)

9. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content–
addressable network. In: Proc. of ACM SIGCOMM, San Diego, CA (2001) 161–172

10. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location and
routing for large-scale peer-to-peer systems. In: Proc. of IFIP/ACM Conf. on
Distributed Systems Platforms, Heidelberg, Germany (2001) 329–350

11. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scal-
able peer-to-peer lookup service for Internet applications. In: Proc. of ACM SIG-
COMM, San Diego, CA (2001) 149–160

12. Adya, A., Bolosky, W.J., Castro, M., Cermak, G., Chaiken, R., Douceur, J.R.,
Howell, J., Lorch, J.R., Theimer, M., Wattenhofer, R.P.: FARSITE: Federated,
available, and reliable storage for an incompletely trusted environment. In: Proc.
of USENIX Symp. on Operating Systems Design and Implementation (OSDI),
Boston, MA (2002) 1–14

13. Dabek, F., Kaashoek, M.F., Karger, D., Morris, R., Stoica, I.: Wide-area coopera-
tive storage with CFS. In: Proc. of ACM Symp. on Operating Systems Principles
(SOSP), Banff, Canada (2001) 202–215

14. Muthitacharoen, A., Morris, R., Gil, T.M., Chen, B.: Ivy: A read/write peer-to-
peer file system. In: Proc. of USENIX Symp. on OSDI, Boston, MA (2002) 31–44

15. Rowstron, A., Druschel, P.: Storage management and caching in PAST, a large-
scale, persistent peer-to-peer storage utility. In: Proc. of ACM SOSP, Banff,
Canada (2001) 188–201

16. Castro, M., Druschel, P., Kermarrec, A.M., Rowstron, A.: SCRIBE: A large-scale
and decentralized application-level multicast infrastructure. In: IEEE Journal on
Selected Areas in Communication. Volume 20. (2002) 1489–1499

17. Pietzuch, P.R., Bacon, J.: Peer-to-peer overlay broker networks in an event-based
middleware. In: Proc. of Workshop on DEBS, San Diego, CA (2003)

18. Terpstra, W.W., Behnel, S., Fiege, L., Zeidler, A., Buchmann, A.P.: A peer-to-peer
approach to content-based publish/subscribe. In: Proc. of Workshop on DEBS, San
Diego, CA (2003)

19. Andrzejak, A., Xu, Z.: Scalable, efficient range queries for grid information services.
In: Proc. of IEEE Conf. on Peer-to-Peer Computing, Linköping, Sweden (2002) 33–
40

20. Harvey, N.J.A., Jones, M.B., Saroiu, S., Theimer, M., Wolman, A.: SkipNet: A
scalable overlay network with practical locality properties. In: Proc. of USENIX
Symp. on Internet Technologies and Systems, Seattle, WA (2003)

21. Aberer, K., Hauswirth, M., Punceva, M., Schmidt, R.: Improving data access in
P2P systems. IEEE Internet Computing 6 (2002) 58–67

22. Gupta, A., Agrawal, D., El Abbadi, A.: Approximate range selection queries in
peer-to-peer systems. In: Proc. of Conf. on Innovative Data Systems Research,
Asilomar, CA (2003)

23. Sahin, O.D., Gupta, A., Agrawal, D., El Abbadi, A.: Query processing over peer–
to–peer data sharing systems. Technical Report UCSB/CSD-2002-28, University
of California at Santa Barbara, Department of Computer Science (2002)

